LTE for UMTS: Evolution to LTE-Advanced / Edition 2

LTE for UMTS: Evolution to LTE-Advanced / Edition 2

ISBN-10:
0470660007
ISBN-13:
9780470660003
Pub. Date:
04/25/2011
Publisher:
Wiley
ISBN-10:
0470660007
ISBN-13:
9780470660003
Pub. Date:
04/25/2011
Publisher:
Wiley
LTE for UMTS: Evolution to LTE-Advanced / Edition 2

LTE for UMTS: Evolution to LTE-Advanced / Edition 2

$139.95 Current price is , Original price is $139.95. You
$139.95 
  • SHIP THIS ITEM
    Qualifies for Free Shipping
  • PICK UP IN STORE
    Check Availability at Nearby Stores

Overview

Written by experts actively involved in the 3GPP standards and product development, LTE for UMTS, Second Edition gives a complete and up-to-date overview of Long Term Evolution (LTE) in a systematic and clear manner. Building upon on the success of the first edition, LTE for UMTS, Second Edition has been revised to now contain improved coverage of the Release 8 LTE details, including field performance results, transport network, self optimized networks and also covering the enhancements done in 3GPP Release 9. This new edition also provides an outlook to Release 10, including the overview of Release 10 LTE-Advanced technology components which enable reaching data rates beyond 1 Gbps.

Key updates for the second edition of LTE for UMTS are focused on the new topics from Release 9 & 10, and include:

  • LTE-Advanced;
  • Self optimized networks (SON);
  • Transport network dimensioning;
  • Measurement results.

Product Details

ISBN-13: 9780470660003
Publisher: Wiley
Publication date: 04/25/2011
Edition description: Revised Edition
Pages: 576
Product dimensions: 6.90(w) x 9.90(h) x 1.40(d)

About the Author

Harri Holma and Antti Toskala, Nokia Siemens Networks, Finland

Read an Excerpt

Click to read or download

Table of Contents

Preface xvii

Acknowledgements xix

List of Abbreviations xxi

1 Introduction 1
Harry Holma and Antti Toskala

1.1 Mobile Voice Subscriber Growth 1

1.2 Mobile Data Usage Growth 1

1.3 Evolution of Wireline Technologies 3

1.4 Motivation and Targets for LTE 4

1.5 Overview of LTE 5

1.6 3GPP Family of Technologies 6

1.7 Wireless Spectrum 8

1.8 New Spectrum Identified by WRC-07 9

1.9 LTE-Advanced 10

2 LTE Standardization 13
Antti Toskala

2.1 Introduction 13

2.2 Overview of 3GPP Releases and Process 13

2.3 LTE Targets 15

2.4 LTE Standardization Phases 16

2.5 Evolution Beyond Release 8 18

2.6 LTE-Advanced for IMT-Advanced 20

2.7 LTE Specifications and 3GPP Structure 20

References 21

3 System Architecture Based on 3GPP SAE 23
Atte Lánsisalmi and Antti Toskala

3.1 System Architecture Evolution in 3GPP 23

3.2 Basic System Architecture Configuration with only E-UTRAN Access Network 25

3.2.1 Overview of Basic System Architecture Configuration 25

3.2.2 Logical Elements in Basic System Architecture Configuration 26

3.2.3 Self-configuration of S1-MME and X2 Interfaces 35

3.2.4 Interfaces and Protocols in Basic System Architecture Configuration 36

3.2.5 Roaming in Basic System Architecture Configuration 40

3.3 System Architecture with E-UTRAN and Legacy 3GPP Access Networks 41

3.3.1 Overview of 3GPP Inter-working System Architecture Configuration 41

3.3.2 Additional and Updated Logical Elements in 3GPP Inter-working System Architecture Configuration 42

3.3.3 Interfaces and Protocols in 3GPP Inter-working System Architecture Configuration 44

3.3.4 Inter-working with Legacy 3GPP CS Infrastructure 45

3.4 System Architecture with E-UTRAN and Non-3GPP Access Networks 46

3.4.1 Overview of 3GPP and Non-3GPP Inter-working System Architecture Configuration 46

3.4.2 Additional and Updated Logical Elements in 3GPP Inter-working System Architecture Configuration 48

3.4.3 Interfaces and Protocols in Non-3GPP Inter-working System Architecture Configuration 51

3.5 Inter-working with cdma2000® Access Networks 52

3.5.1 Architecture for cdma2000® HRPD Inter-working 52

3.5.2 Additional and Updated Logical Elements for cdma2000® HRPD Inter-working 54

3.5.3 Protocols and Interfaces in cdma2000® HRPD Inter-working 55

3.5.4 Inter-working with cdma2000® 1xRTT 56

3.6 IMS Architecture 56

3.6.1 Overview 56

3.6.2 Session Management and Routing 58

3.6.3 Databases 59

3.6.4 Services Elements 59

3.6.5 Inter-working Elements 59

3.7 PCC and QoS 60

3.7.1 PCC 60

3.7.2 QoS 62

References 65

4 Introduction to OFDMA and SC-FDMA and to MIMO in LTE 67
Antti Toskala and Timo Lunttila

4.1 Introduction 67

4.2 LTE Multiple Access Background 67

4.3 OFDMA Basics 70

4.4 SC-FDMA Basics 76

4.5 MIMO Basics 80

4.6 Summary 82

References 82

5 Physical Layer 83
Antti Toskala, Timo Lunttila, Esa Tiirola, Kari Hooli, Mieszko Chmiel and Juha Korhonen

5.1 Introduction 83

5.2 Transport Channels and their Mapping to the Physical Channels 83

5.3 Modulation 85

5.4 Uplink User Data Transmission 86

5.5 Downlink User Data Transmission 90

5.6 Uplink Physical Layer Signaling Transmission 93

5.6.1 Physical Uplink Control Channel, PUCCH 94

5.6.2 PUCCH Configuration 98

5.6.3 Control Signaling on PUSCH 102

5.6.4 Uplink Reference Signals 104

5.7 PRACH Structure 109

5.7.1 Physical Random Access Channel 109

5.7.2 Preamble Sequence 110

5.8 Downlink Physical Layer Signaling Transmission 112

5.8.1 Physical Control Format Indicator Channel (PCFICH) 112

5.8.2 Physical Downlink Control Channel (PDCCH) 113

5.8.3 Physical HARQ Indicator Channel (PHICH) 115

5.8.4 Cell-specific Reference Signal 116

5.8.5 Downlink Transmission Modes 117

5.8.6 Physical Broadcast Channel (PBCH) 119

5.8.7 Synchronization Signal 120

5.9 Physical Layer Procedures 120

5.9.1 HARQ Procedure 121

5.9.2 Timing Advance 122

5.9.3 Power Control 123

5.9.4 Paging 124

5.9.5 Random Access Procedure 124

5.9.6 Channel Feedback Reporting Procedure 127

5.9.7 Multiple Input Multiple Output (MIMO) Antenna Technology 132

5.9.8 Cell Search Procedure 134

5.9.9 Half-duplex Operation 134

5.10 UE Capability Classes and Supported Features 135

5.11 Physical Layer Measurements 136

5.11.1 eNodeB Measurements 136

5.11.2 UE Measurements and Measurement Procedure 137

5.12 Physical Layer Parameter Configuration 137

5.13 Summary 138

References 139

6 LTE Radio Protocols 141
Antti Toskala, Woonhee Hwang and Colin Willcock

6.1 Introduction 141

6.2 Protocol Architecture 141

6.3 The Medium Access Control 144

6.3.1 Logical Channels 145

6.3.2 Data Flow in MAC Layer 146

6.4 The Radio Link Control Layer 147

6.4.1 RLC Modes of Operation 148

6.4.2 Data Flow in the RLC Layer 148

6.5 Packet Data Convergence Protocol 150

6.6 Radio Resource Control (RRC) 151

6.6.1 UE States and State Transitions Including Inter-RAT 151

6.6.2 RRC Functions and Signaling Procedures 152

6.6.3 Self Optimization – Minimization of Drive Tests 167

6.7 X2 Interface Protocols 169

6.7.1 Handover on X2 Interface 169

6.7.2 Load Management 171

6.8 Understanding the RRC ASN.1 Protocol Definition 172

6.8.1 ASN.1 Introduction 172

6.8.2 RRC Protocol Definition 173

6.9 Early UE Handling in LTE 182

6.10 Summary 183

References 183

7 Mobility 185
Chris Callender, Harri Holma, Jarkko Koskela and Jussi Reunanen

7.1 Introduction 185

7.2 Mobility Management in Idle State 186

7.2.1 Overview of Idle Mode Mobility 186

7.2.2 Cell Selection and Reselection Process 187

7.2.3 Tracking Area Optimization 189

7.3 Intra-LTE Handovers 190

7.3.1 Procedure 190

7.3.2 Signaling 192

7.3.3 Handover Measurements 195

7.3.4 Automatic Neighbor Relations 195

7.3.5 Handover Frequency 196

7.3.6 Handover Delay 197

7.4 Inter-system Handovers 198

7.5 Differences in E-UTRAN and UTRAN Mobility 199

7.6 Summary 201

References 201

8 Radio Resource Management 203
Harri Holma, Troels Kolding, Daniela Laselva, Klaus Pedersen, Claudio Rosa and Ingo Viering

8.1 Introduction 203

8.2 Overview of RRM Algorithms 203

8.3 Admission Control and QoS Parameters 204

8.4 Downlink Dynamic Scheduling and Link Adaptation 206

8.4.1 Layer 2 Scheduling and Link Adaptation Framework 206

8.4.2 Frequency Domain Packet Scheduling 206

8.4.3 Combined Time and Frequency Domain Scheduling Algorithms 209

8.4.4 Packet Scheduling with MIMO 211

8.4.5 Downlink Packet Scheduling Illustrations 211

8.5 Uplink Dynamic Scheduling and Link Adaptation 216

8.5.1 Signaling to Support Uplink Link Adaptation and Packet Scheduling 219

8.5.2 Uplink Link Adaptation 223

8.5.3 Uplink Packet Scheduling 223

8.6 Interference Management and Power Settings 227

8.6.1 Downlink Transmit Power Settings 227

8.6.2 Uplink Interference Coordination 228

8.7 Discontinuous Transmission and Reception (DTX/DRX) 230

8.8 RRC Connection Maintenance 233

8.9 Summary 233

References 234

9 Self Organizing Networks (SON) 237
Krzysztof Kordybach, Seppo Hamalainen, Cinzia Sartori and Ingo Viering

9.1 Introduction 237

9.2 SON Architecture 238

9.3 SON Functions 241

9.4 Self-Configuration 241

9.4.1 Configuration of Physical Cell ID 242

9.4.2 Automatic Neighbor Relations (ANR) 243

9.5 Self-Optimization and Self-Healing Use Cases 244

9.5.1 Mobility Load Balancing (MLB) 245

9.5.2 Mobility Robustness Optimization (MRO) 248

9.5.3 RACH Optimization 251

9.5.4 Energy Saving 251

9.5.5 Summary of the Available SON Procedures 252

9.5.6 SON Management 252

9.6 3GPP Release 10 Use Cases 253

9.7 Summary 254

References 255

10 Performance 257
Harri Holma, Pasi Kinnunen, Istvàn Z. Kovàcs, Kari Pajukoski, Klaus Pedersen and Jussi Reunanen

10.1 Introduction 257

10.2 Layer 1 Peak Bit Rates 257

10.3 Terminal Categories 260

10.4 Link Level Performance 261

10.4.1 Downlink Link Performance 261

10.4.2 Uplink Link Performance 262

10.5 Link Budgets 265

10.6 Spectral Efficiency 270

10.6.1 System Deployment Scenarios 270

10.6.2 Downlink System Performance 273

10.6.3 Uplink System Performance 275

10.6.4 Multi-antenna MIMO Evolution Beyond 2 × 2 276

10.6.5 Higher Order Sectorization (Six Sectors) 283

10.6.6 Spectral Efficiency as a Function of LTE Bandwidth 285

10.6.7 Spectral Efficiency Evaluation in 3GPP 286

10.6.8 Benchmarking LTE to HSPA 287

10.7 Latency 288

10.7.1 User Plane Latency 288

10.8 LTE Refarming to GSM Spectrum 290

10.9 Dimensioning 291

10.10 Capacity Management Examples from HSPA Networks 293

10.10.1 Data Volume Analysis 293

10.10.2 Cell Performance Analysis 297

10.11 Summary 299

References 301

11 LTE Measurements 303
Marilynn P. Wylie-Green, Harri Holma, Jussi Reunanen and Antti Toskala

11.1 Introduction 303

11.2 Theoretical Peak Data Rates 303

11.3 Laboratory Measurements 305

11.4 Field Measurement Setups 306

11.5 Artificial Load Generation 307

11.6 Peak Data Rates in the Field 310

11.7 Link Adaptation and MIMO Utilization 311

11.8 Handover Performance 313

11.9 Data Rates in Drive Tests 315

11.10 Multi-user Packet Scheduling 317

11.11 Latency 320

11.12 Very Large Cell Size 321

11.13 Summary 323

References 323

12 Transport 325
Torsten Musiol

12.1 Introduction 325

12.2 Protocol Stacks and Interfaces 325

12.2.1 Functional Planes 325

12.2.2 Network Layer (L3) – IP 327

12.2.3 Data Link Layer (L2) – Ethernet 328

12.2.4 Physical Layer (L1) – Ethernet Over Any Media 329

12.2.5 Maximum Transmission Unit Size Issues 330

12.2.6 Traffic Separation and IP Addressing 332

12.3 Transport Aspects of Intra-LTE Handover 334

12.4 Transport Performance Requirements 335

12.4.1 Throughput (Capacity) 335

12.4.2 Delay (Latency), Delay Variation (Jitter) 338

12.4.3 TCP Issues 339

12.5 Transport Network Architecture for LTE 340

12.5.1 Implementation Examples 340

12.5.2 X2 Connectivity Requirements 341

12.5.3 Transport Service Attributes 342

12.6 Quality of Service 342

12.6.1 End-to-End QoS 342

12.6.2 Transport QoS 343

12.7 Transport Security 344

12.8 Synchronization from Transport Network 347

12.8.1 Precision Time Protocol 347

12.8.2 Synchronous Ethernet 348

12.9 Base Station Co-location 348

12.10 Summary 349

References 349

13 Voice over IP (VoIP) 351
Harri Holma, Juha Kallio, Markku Kuusela, Petteri Lundèn, Esa Malkamáki, Jussi Ojala and Haiming Wang

13.1 Introduction 351

13.2 VoIP Codecs 351

13.3 VoIP Requirements 353

13.4 Delay Budget 354

13.5 Scheduling and Control Channels 354

13.6 LTE Voice Capacity 357

13.7 Voice Capacity Evolution 364

13.8 Uplink Coverage 365

13.9 Circuit Switched Fallback for LTE 368

13.10 Single Radio Voice Call Continuity (SR-VCC) 370

13.11 Summary 372

References 373

14 Performance Requirements 375
Andrea Ancora, Iwajlo Angelow, Dominique Brunel, Chris Callender, Harri Holma, Peter Muszynski, Earl Mc Cune and Laurent Noél

14.1 Introduction 375

14.2 Frequency Bands and Channel Arrangements 375

14.2.1 Frequency Bands 375

14.2.2 Channel Bandwidth 378

14.2.3 Channel Arrangements 379

14.3 eNodeB RF Transmitter 380

14.3.1 Operating Band Unwanted Emissions 381

14.3.2 Co-existence with Other Systems on Adjacent Carriers Within the Same Operating Band 383

14.3.3 Co-existence with Other Systems in Adjacent Operating Bands 385

14.3.4 Transmitted Signal Quality 389

14.4 eNodeB RF Receiver 392

14.5 eNodeB Demodulation Performance 398

14.6 User Equipment Design Principles and Challenges 403

14.6.1 Introduction 403

14.6.2 RF Subsystem Design Challenges 403

14.6.3 RF-baseband Interface Design Challenges 410

14.6.4 LTE Versus HSDPA Baseband Design Complexity 414

14.7 UE RF Transmitter 418

14.7.1 LTE UE Transmitter Requirement 418

14.7.2 LTE Transmit Modulation Accuracy, EVM 418

14.7.3 Desensitization for Band and Bandwidth Combinations (De-sense) 419

14.7.4 Transmitter Architecture 420

14.8 UE RF Receiver Requirements 421

14.8.1 Reference Sensitivity Level 422

14.8.2 Introduction to UE Self-Desensitization Contributors in FDD UEs 424

14.8.3 ACS, Narrowband Blockers and ADC Design Challenges 429

14.8.4 EVM Contributors: A Comparison between LTE and WCDMA Receivers 435

14.9 UE Demodulation Performance 440

14.9.1 Transmission Modes 440

14.9.2 Channel Modeling and Estimation 443

14.9.3 Demodulation Performance 443

14.10 Requirements for Radio Resource Management 446

14.10.1 Idle State Mobility 447

14.10.2 Connected State Mobility When DRX is not Active 447

14.10.3 Connected State Mobility When DRX is Active 450

14.10.4 Handover Execution Performance Requirements 450

14.11 Summary 451

References 452

15 LTE TDD Mode 455
Che Xiangguang, Troels Kolding, Peter Skov, Wang Haiming and Antti Toskala

15.1 Introduction 455

15.2 LTE TDD Fundamentals 455

15.2.1 The LTE TDD Frame Structure 457

15.2.2 Asymmetric Uplink/Downlink Capacity Allocation 459

15.2.3 Co-existence with TD-SCDMA 459

15.2.4 Channel Reciprocity 460

15.2.5 Multiple Access Schemes 461

15.3 TDD Control Design 462

15.3.1 Common Control Channels 462

15.3.2 Sounding Reference Signal 464

15.3.3 HARQ Process and Timing 465

15.3.4 HARQ Design for UL TTI Bundling 466

15.3.5 UL HARQ-ACK/NACK Transmission 467

15.3.6 DL HARQ-ACK/NACK Transmission 467

15.3.7 DL HARQ-ACK/NACK Transmission with SRI and/or CQI over PUCCH 468

15.4 Semi-persistent Scheduling 469

15.5 MIMO and Dedicated Reference Signals 471

15.6 LTE TDD Performance 472

15.6.1 Link Performance 473

15.6.2 Link Budget and Coverage for the TDD System 473

15.6.3 System Level Performance 477

15.7 Evolution of LTE TDD 483

15.8 LTE TDD Summary 484

References 484

16 LTE-Advanced 487

Mieszko Chmiel, Mihai Enescu, Harri Holma, Tommi Koivisto, Jari Lindholm, Timo Lunttila, Klaus Pedersen, Peter Skov, Timo Roman, Antti Toskala and Yuyu Yan

16.1 Introduction 487

16.2 LTE-Advanced and IMT-Advanced 487

16.3 Requirements 488

16.3.1 Backwards Compatibility 488

16.4 3GPP LTE-Advanced Study Phase 489

16.5 Carrier Aggregation 489

16.5.1 Impact of the Carrier Aggregation for the Higher Layer Protocol and Architecture 492

16.5.2 Physical Layer Details of the Carrier Aggregation 493

16.5.3 Changes in the Physical Layer Uplink due to Carrier Aggregation 493

16.5.4 Changes in the Physical Layer Downlink due to Carrier Aggregation 494

16.5.5 Carrier Aggregation and Mobility 494

16.5.6 Carrier Aggregation Performance 495

16.6 Downlink Multi-antenna Enhancements 496

16.6.1 Reference Symbol Structure in the Downlink 496

16.6.2 Codebook Design 499

16.6.3 System Performance of Downlink Multi-antenna Enhancements 501

16.7 Uplink Multi-antenna Techniques 502

16.7.1 Uplink Multi-antenna Reference Signal Structure 503

16.7.2 Uplink MIMO for PUSCH 503

16.7.3 Uplink MIMO for Control Channels 504

16.7.4 Uplink Multi-user MIMO 505

16.7.5 System Performance of Uplink Multi-antenna Enhancements 505

16.8 Heterogeneous Networks 506

16.9 Relays 508

16.9.1 Architecture (Design Principles of Release 10 Relays) 508

16.9.2 DeNB – RN Link Design 510

16.9.3 Relay Deployment 511

16.10 Release 11 Outlook 512

16.11 Conclusions 513

References 513

17 HSPA Evolution 515
Harri Holma, Karri Ranta-aho and Antti Toskala

17.1 Introduction 515

17.2 Discontinuous Transmission and Reception (DTX/DRX) 515

17.3 Circuit Switched Voice on HSPA 517

17.4 Enhanced FACH and RACH 520

17.5 Downlink MIMO and 64QAM 521

17.5.1 MIMO Workaround Solutions 523

17.6 Dual Cell HSDPA and HSUPA 524

17.7 Multicarrier and Multiband HSDPA 526

17.8 Uplink 16QAM 527

17.9 Terminal Categories 528

17.10 Layer 2 Optimization 529

17.11 Single Frequency Network (SFN) MBMS 531

17.12 Architecture Evolution 531

17.13 Summary 533

References 535

Index 537 

What People are Saying About This

From the Publisher

"Written by experts actively involved in the 3GPP standards and product development, LTE for UMTS, Second Edition gives a complete and up-to-date overview of Long Term Evolution (LTE) in a systematic and clear manner. Building upon on the success of the first edition, LTE for UMTS, Second Edition has been revised to now contain improved coverage of the Release 8 LTE details, including field performance results, transport network, self optimized networks and also covering the enhancements done in 3GPP Release 9." (FierceTelecom, 17 August 2011)

From the B&N Reads Blog

Customer Reviews